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contribution also enters through the quantities 6* and J,,
and these quantities are based on boundary-layer profiles
which have also, implicitly, included the effect of blowing
(or suction) through the appropriate boundary conditions
used in solving the boundary-layer equations.

For flows with moderate Mach numbers [M2 ~ O(1)],
the additional term p,v./p U, , may have significant
contributions to the displacement thickness, because its
magnitude may well be comparable to that of the term
86%/0x.

For nearly quasi-steady hypersonic flows with “similarity
type” of blowing (or suction), i.e. p,b,/poUs = af(Re)?, as
treated in [6], this additional term is found to be small
compared to 93*/dx; however, it may become comparable
to the term U.'(86,/9t), depending on the parameters
characterizing the flow unsteadiness. A discussion on
boundary layer induced pressures for such flows also
appears in [6].

Finally we remark that the idea used in this note can be
employed to generalize the study to more general flow
configurations. Thus in two dimensional flow, for example,
we shall have the situations of U, = U, (x, 1), po = Pu(x, )
for an arbitrary body in unsteady motion. ‘
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NOMENCLATURE
D, horizontal dimension of test cell {cm];
E, vertical dimension of test cell [cm];
k,  thermal conductivity [cal/cms°C};
ko, effective thermal conductivity [cal/cms°C];

L, vertical dimension of liquid [cm] ;

n,  nodal position in space network ;

N, total number of space nodes;

Nu, Nusselt number, k,/k, [dimensionless];
Q, heat flux [cal/cm?s];

* Present address: Shell Development Company,
Emeryville, California.

r,  number of spatial node at solid-liquid interface;

t, time [s};

T, temperature [°C];

Ty, fusion temperature [°C];

u,  velocity [cm/s];

x, distance along vertical axis [cm].

Greek symbols

a,  thermal diffusivity [cm?/s];

€, ice thickness, interface position [cm];

8, point temperature minus fusion temperature, T ~
T [°Cl;

4, latent heat of fusion [cal/g];

p,  density [g/em3].



1372

Subscripts
1, solid phase;
2,  liquid phase;
m, number of time increments;
n,  position of spatial node;
0, initial condition.

INTRODUCTION

THE MATHEMATICAL description of the rate of solid-liquid
phase change during unidirectional heat transfer in the
direction of gravity has been presented using numerous
techniques. A powerful method is numerical integration.
The finite-difference method of Murray and Landis [1] is
particularly useful.

The differential equations describe conduction in the
solid phase:
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and conduction in the liquid phase:
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These are coupled by a heat balance at the interface:
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The Murray-Landis scheme uses a variable-space network
such that each phase is divided into equal-size space incre-
ments which change in size as the fusion front moves. The
above equations are written in difference form using a three-
point temperature approximation. Equation (4) applies for
0 < n < r, and equation (5)is forr < n < N.
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If initial and boundary conditions are specified, the equa-
tions can be solved on a digital computer for interfacial
position and velocity and the temperature profile as a
function of time.
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Thomas and Westwater [2] verified the model using their
experimental data for n-octadecane. The model was ex-
tended to include free convection in the liquid by Boger and
Westwater [3], and verification was obtained with their data
for water. Additional extensions are reported in this
communication. New data were obtained [4] using appa-
ratus similar to that used by these prior workers. Pure water
was confined in transparent plastic cells, 127 x 1-27 ¢cm
square, with heights of 3-10 cm. Heat transfer was vertical.
The interfacial motion was obtained by cinephotomicro-
scopy, and the temperature profile was obtained with
thermocouples.

DEFINING THE SOLUTION WHEN ONE PHASE
IS INITIALLY PRESENT

If only one phase is present initially, either ¢ or E — ¢ is
zero and equations (4) and (6) or (5) and (6) are undefined.
The starting procedure (Method I) used earlier [3] assumed
that for a short starting time the latent heat transfer in water
was equal to the sensible heat change in the heat sink (a
cooled copper block) at one end of the cell. This arbitrary
scheme prevents wild starting values. Although initial
velocities of incorrect sign can result, agreement was
obtained between experimental data and the mode! shortly
thereafter.

An improved starting procedure (Method II) has been
developed which gives initial velocities of correct sign. The
liquid is considered to be effectively infinite in depth at the
start of a freezing test. A small time increment ¢, is selected,
and the sensible heat removed (resulting in subcooled liquid)
during that time is computed using the well-known [5]
expression :

tp

J Qdt = 2k, [Ty — Ty(0, to)] /(to/mty). M

[
One assumes that all the sensible heat of subcooling is then
converted instantly to latent heat change resulting in a solid
thickness ¢, at time ¢, given by:

2k
€0 = —[Tr = Ti(0, 10)] /(to/nty). ®)
Apy

This value of ¢, is used to start the difference equations, and
elapsed time thereafter is added to ¢,. A similar procedure is
used if only solid is initially present. In general it is necessary
only to obtain a realistic starting thickness and not an
accurate value, because the time t, is a negligible fraction of
the total time. Thus, corrections for sensible heat residing in
the solid and liquid at time ¢, are seldom justified. Similarly,
the assumption of a linear profile in the solid at ¢, is satis-
factory.

Methods I and II are compared in Fig. 1. Curves 2 and 4
indicate that little change results if ¢, is decreased from the
theoretical value of 0-2 cm to 0-091 (an arbitrary value which
could result if sensible heats were considered). Curve 3 is in
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FiG. 1. Comparison of starting methods when only one
phase is initially present. Run 3H, water at 12-5°C initially
present, freezing initiated at top by decreasing top tempera-
ture to —42-5°C, cell height of 4-59 cm.

better agreement with experimental data; this is expected
since Ty(0,1,) is nearer T and errors introduced by the
assumptions are smaller.

EFFECT OF UNEQUAL PHASE DENSITIES

During any phase change for which the densities of the
two phases differ, fluid motion occurs. For the water—ice
system the direction is away from the ice during freezing
and towards the ice during melting. The velocity of the
drift was expressed by Longwell [6] and Scriven [7] but its
use for melting and freezing has been omitted till now. The
drift depends on the densities as shown by a mass balance

at the interface :
P2 — p1\de
=|—)]— 9
Uy ( 02 >dt )

Assuming A is evaluated at T, equation (3) is unchanged.
Equation (2) becomes:
86, 60, (p; — p,)de 80,
==t
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Figure 2 shows a comparison of the mathematical solu-
tions with equal and unequal phase densities. Since both
solutions yield the same final interfacial position, lower
interfacial velocities at early times for the second solution
result in higher velocities later in the run. The solution using

T T T T T
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F1G. 2. Effect of unequal phase densities. Run 3D, water at
13-8°C initially present, freezing initiated at top by de-
creasing top temperature to —46-5°C, cell height of 4-59 cm.

differing densities is in better agreement with the data,
although the effect is small. The magnitude of the effect
depends on the ratio of heat transport in the liquid by
conduction to the transport by liquid drift. The effect will be
important for large interfacial velocities or large density
differences. Note that the liquid motion considered here is
not caused by buoyancy and is not free convection as
generally understood. If free convection occurs, the pro-
cedure is modified as described below.

EFFECT OF LIQUID L /D DURING
NATURAL CONVECTION
Inasmuch as no analytical solution is available for the
effect of natural convection due to buoyancy forces in the
liquid, the use of an empirical effective conductivity has been
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FiG. 3. Comparison of transient data with steady-state correlation of Nusselt numbers vs.
Rayleigh number; depth-width ratio {(L/D) of liquid included.

adopted. This accounts for heat transport by both con-
duction and convection. Boger and Westwater [3] showed
that transient data for melting and freezing agreed with non-
phase-change data of Globe and Dropkin [8] and Schmidt
and Silveston [9]. A good correlation of all these data is
given by O’'Toole and Silveston [10] and is shown as the

20 T T

upper curve in Fig. 3. The effect of the depth-width ratio
(L/D) of the liquid was neglected. The value was below 0-5.

The recent tests (non-phase-change) of Catton and
Edwards [11] show that L/D is an important parameter
during natural convection. Their resuits are the family of
curves in Fig. 3. The transitions from pure conduction
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F1G 4. Effect of liquid depth-width ratio on phase change during liquid
convection. Run 3M, water at 69°C initially present, freezing initiated
at top by decreasing top temperature to —16°C. cell height of 486 cm.
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{Nu = 1) to convection (Nu > 1) were verified in the present
study for L/D of 0-5 and 1-0. Transient data obtained during
phase change are shown in Fig. 3 and these substantiate the
effect of L/D in the range of 0-59-3-0.

Experimental interfacial velocities and positions are given
in Fig. 4. Also shown are predicted results using k., as a
function of L/D in the finite-difference equations. The agree-
ment is superior to that obtained when the effect of L/D is
ignored.

In summary, the additional uses of the numerica! method
of Murray and Landis now include (1} Cases in which only
one phase is present initially; (2) Cases with unequal
densities for the phases; (3) Cases with free convection in
the liquid ; and (4) Cases such that the depth-width ratio for
the liquid affects convection in the liquid.
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NOMENCLATURE

E, electric field;

Co, constant defined by equation (6);
f1,  defined by equation (18);

f3,  defined by equation (19);

f3,  solution of equation (16);

go, defined by equation (39);

gy, defined by equation (40);

g5, solution of equation (36);

* Partially supported by the U.S. Army Research Office
(Durham) under Contract DAHC 04-68-C-0006.
+ Partially supported by AEC Contract AT(04-3)767.

y/1nng;

Joule heating parameter, aoE?r2/ko Ty ;

thermal conductivity of conductor at temperature T;

0. thermal conductivity of conductor at temperature

Ty;

k, thermal conductivity of insulator ;

7, radial coordinate measured from center of con-
ductor;

r, radius of conductor;

ro, radial distance from center of conductor to outside
surface of insulator;

T temperature;

T,, temperature of outside surface of insulator.

= x>



